Reaction Mechanisms of CO2 Reduction to Formaldehyde Catalyzed by Hourglass Ru, Fe, and Os Complexes: A Density Functional Theory Study

نویسندگان

  • Chunhua Dong
  • Mingsong Ji
  • Xinzheng Yang
  • Jiannian Yao
  • Hui Chen
چکیده

The reaction mechanisms for the reduction of carbon dioxide to formaldehyde catalyzed by bis(tricyclopentylphosphine) metal complexes, [RuH2(H2)(PCyp3)2] (1Ru), [FeH2(H2)(PCyp3)2] (1Fe) and [OsH4(PCyp3)2] (1Os), were studied computationally by using the density functional theory (DFT). 1Ru is a recently reported highly efficient catalyst for this reaction. 1Fe and 1Os are two analogues of 1Ru with the Ru atom replaced by Fe and Os, respectively. The total free energy barriers of the reactions catalyzed by 1Ru, 1Fe and 1Os are 24.2, 24.0 and 29.0 kcal/mol, respectively. With a barrier close to the experimentally observed Ru complex, the newly proposed iron complex is a potential low-cost catalyst for the reduction of carbon dioxide to formaldehyde under mild conditions. The electronic structures of intermediates and transition states in these reactions were analyzed by using the natural bond orbital theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing Ru and Fe-catalyzed olefin metathesis.

Density functional theory calculations have been used to explore the potential of Fe-based complexes with an N-heterocyclic carbene ligand, as olefin metathesis catalysts. Apart from a less endothermic reaction energy profile, a small reduction in the predicted upper energy barriers (≈ 2 kcal mol(-1)) is calculated in the Fe catalyzed profile with respect to the Ru catalysed profile. Overall, t...

متن کامل

Metal Dependence of Signal Transmission through Molecular Quantum-Dot Cellular Automata (QCA): A Theoretical Study on Fe, Ru, and Os Mixed-Valence Complexes

Dynamic behavior of signal transmission through metal complexes [L5M-BL-ML5]5+ (M=Fe, Ru, Os, BL=pyrazine (py), 4,4'-bipyridine (bpy), L=NH3), which are simplified models of the molecular quantum-dot cellular automata (molecular QCA), is discussed from the viewpoint of one-electron theory, density functional theory. It is found that for py complexes, the signal transmission time (tst) is Fe(0.6...

متن کامل

Theoretical study on the mechanism of hydromethoxylation catalyzed by palladium(II) complex

Palladium (II) coordination complexes catalyze the reaction of alcohols with ketones to yield ethers. During the catalytic cycle, the alcohol adds selectively to the β-carbon (anti-Markovnikov). In this work, mechanism and kinetics for the reaction of methanol with methyl vinyl ketone (MVK), being catalyzed by Pd, has been theoretically investigated in detail. Using quantum mechanical approach,...

متن کامل

Theoretical study on the mechanism of hydromethoxylation catalyzed by palladium(II) complex

Palladium (II) coordination complexes catalyze the reaction of alcohols with ketones to yield ethers. During the catalytic cycle, the alcohol adds selectively to the β-carbon (anti-Markovnikov). In this work, mechanism and kinetics for the reaction of methanol with methyl vinyl ketone (MVK), being catalyzed by Pd, has been theoretically investigated in detail. Using quantum mechanical approach,...

متن کامل

Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc03911a Click here for additional data file.

A single-atom catalyst (SAC) has an electronic structure that is very different from its bulk counterparts, and has shown an unexpectedly high specific activity with a significant reduction in noble metal usage for CO oxidation, fuel cell and hydrogen evolution applications, although physical origins of such performance enhancements are still poorly understood. Herein, by means of density funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016